3.14 \(\int (a+a \sec (c+d x))^2 \, dx\)

Optimal. Leaf size=34 \[ \frac{a^2 \tan (c+d x)}{d}+\frac{2 a^2 \tanh ^{-1}(\sin (c+d x))}{d}+a^2 x \]

[Out]

a^2*x + (2*a^2*ArcTanh[Sin[c + d*x]])/d + (a^2*Tan[c + d*x])/d

________________________________________________________________________________________

Rubi [A]  time = 0.0237475, antiderivative size = 34, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 12, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.333, Rules used = {3773, 3770, 3767, 8} \[ \frac{a^2 \tan (c+d x)}{d}+\frac{2 a^2 \tanh ^{-1}(\sin (c+d x))}{d}+a^2 x \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Sec[c + d*x])^2,x]

[Out]

a^2*x + (2*a^2*ArcTanh[Sin[c + d*x]])/d + (a^2*Tan[c + d*x])/d

Rule 3773

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^2, x_Symbol] :> Simp[a^2*x, x] + (Dist[2*a*b, Int[Csc[c + d*x], x],
 x] + Dist[b^2, Int[Csc[c + d*x]^2, x], x]) /; FreeQ[{a, b, c, d}, x]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rubi steps

\begin{align*} \int (a+a \sec (c+d x))^2 \, dx &=a^2 x+a^2 \int \sec ^2(c+d x) \, dx+\left (2 a^2\right ) \int \sec (c+d x) \, dx\\ &=a^2 x+\frac{2 a^2 \tanh ^{-1}(\sin (c+d x))}{d}-\frac{a^2 \operatorname{Subst}(\int 1 \, dx,x,-\tan (c+d x))}{d}\\ &=a^2 x+\frac{2 a^2 \tanh ^{-1}(\sin (c+d x))}{d}+\frac{a^2 \tan (c+d x)}{d}\\ \end{align*}

Mathematica [B]  time = 0.433958, size = 171, normalized size = 5.03 \[ \frac{a^2 (\cos (c+d x)+1)^2 \sec ^4\left (\frac{1}{2} (c+d x)\right ) \left (\frac{\sin (d x)}{\left (\cos \left (\frac{c}{2}\right )-\sin \left (\frac{c}{2}\right )\right ) \left (\sin \left (\frac{c}{2}\right )+\cos \left (\frac{c}{2}\right )\right ) \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right ) \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )}-2 \log \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right )+2 \log \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )+d x\right )}{4 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Sec[c + d*x])^2,x]

[Out]

(a^2*(1 + Cos[c + d*x])^2*Sec[(c + d*x)/2]^4*(d*x - 2*Log[Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] + 2*Log[Cos[(c
+ d*x)/2] + Sin[(c + d*x)/2]] + Sin[d*x]/((Cos[c/2] - Sin[c/2])*(Cos[c/2] + Sin[c/2])*(Cos[(c + d*x)/2] - Sin[
(c + d*x)/2])*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2]))))/(4*d)

________________________________________________________________________________________

Maple [A]  time = 0.026, size = 50, normalized size = 1.5 \begin{align*}{a}^{2}x+2\,{\frac{{a}^{2}\ln \left ( \sec \left ( dx+c \right ) +\tan \left ( dx+c \right ) \right ) }{d}}+{\frac{{a}^{2}\tan \left ( dx+c \right ) }{d}}+{\frac{{a}^{2}c}{d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(d*x+c))^2,x)

[Out]

a^2*x+2/d*a^2*ln(sec(d*x+c)+tan(d*x+c))+a^2*tan(d*x+c)/d+1/d*a^2*c

________________________________________________________________________________________

Maxima [A]  time = 1.17209, size = 55, normalized size = 1.62 \begin{align*} a^{2} x + \frac{2 \, a^{2} \log \left (\sec \left (d x + c\right ) + \tan \left (d x + c\right )\right )}{d} + \frac{a^{2} \tan \left (d x + c\right )}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^2,x, algorithm="maxima")

[Out]

a^2*x + 2*a^2*log(sec(d*x + c) + tan(d*x + c))/d + a^2*tan(d*x + c)/d

________________________________________________________________________________________

Fricas [B]  time = 1.769, size = 193, normalized size = 5.68 \begin{align*} \frac{a^{2} d x \cos \left (d x + c\right ) + a^{2} \cos \left (d x + c\right ) \log \left (\sin \left (d x + c\right ) + 1\right ) - a^{2} \cos \left (d x + c\right ) \log \left (-\sin \left (d x + c\right ) + 1\right ) + a^{2} \sin \left (d x + c\right )}{d \cos \left (d x + c\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^2,x, algorithm="fricas")

[Out]

(a^2*d*x*cos(d*x + c) + a^2*cos(d*x + c)*log(sin(d*x + c) + 1) - a^2*cos(d*x + c)*log(-sin(d*x + c) + 1) + a^2
*sin(d*x + c))/(d*cos(d*x + c))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} a^{2} \left (\int 1\, dx + \int 2 \sec{\left (c + d x \right )}\, dx + \int \sec ^{2}{\left (c + d x \right )}\, dx\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))**2,x)

[Out]

a**2*(Integral(1, x) + Integral(2*sec(c + d*x), x) + Integral(sec(c + d*x)**2, x))

________________________________________________________________________________________

Giac [B]  time = 1.4852, size = 107, normalized size = 3.15 \begin{align*} \frac{{\left (d x + c\right )} a^{2} + 2 \, a^{2} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1 \right |}\right ) - 2 \, a^{2} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 1 \right |}\right ) - \frac{2 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^2,x, algorithm="giac")

[Out]

((d*x + c)*a^2 + 2*a^2*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 2*a^2*log(abs(tan(1/2*d*x + 1/2*c) - 1)) - 2*a^2*t
an(1/2*d*x + 1/2*c)/(tan(1/2*d*x + 1/2*c)^2 - 1))/d